在用電設(shè)備中,存在著大量的感性負載(如
電動機),這些感性負載在消耗有功功率的同時,也占用了大量的感性
無功功率,由于無功功率虛占了設(shè)備容量、增大了線路的電流值,而線路的損失與電流的平方成正比。因此,無功功率必須予以補償。為了提高功率因數(shù),一般企事業(yè)單位用
電容器的容性進行
無功補償。在補償?shù)攸c上可采取變電所集中補償、分區(qū)域集中補償、分散
就地補償、分散與集中相結(jié)合等,在補償方式上可分為手動補償和自動補償。由于補償?shù)攸c和方式關(guān)系到
節(jié)電效果,關(guān)系到設(shè)備投資,關(guān)系到設(shè)備運行安全與維護,因此,必須因地制宜地加以選擇。目前,電力電容器的投切
開關(guān)有以下3種:
(1)普通接觸器
電容器的電流與電容
電壓對時間的微分成正比,當(dāng)接觸器投入時,電容器上的初始電壓與電 網(wǎng)電壓在一般情況下不相等,大壓差可達1.4倍的額定電壓以上,當(dāng)巨大的壓差突然加到電容器兩端使電容器的電壓發(fā)生突變時,則通過接觸器和電容器電流將高達10倍以上的額定電流。這種浪涌電流有多種危害:一方面,在接觸器觸點處產(chǎn)生火花,使觸點粘住、無法分斷而損壞;另一方面,縮短了電容器的使用壽命;再者,對電網(wǎng)的巨大沖擊而產(chǎn)生了干擾,可能使其他電子設(shè)備無法正常工作。
(2)帶預(yù)投電阻的專用接觸器
這類接觸器整體體積較大,事實上在工作時也沒有真正解決浪涌電流問題,同時,由于與接觸器觸點配合不理想使電阻發(fā)熱而損壞的現(xiàn)象時有發(fā)生,所以,這類接觸器并不是理想的電容投切接觸器。
交流繼電器的內(nèi)部往往用2個單向可控硅反并聯(lián)或雙向可控硅構(gòu)成,用于電容投切無功補償時的
工作原理是這樣的:當(dāng)固態(tài)繼電器接到投切信號時,還要判別觸點兩端的電壓是否接近于零電壓,一旦等待到兩端壓差接近零電壓時,則開關(guān)閉合,投入工作;當(dāng)固態(tài)繼電器接到切斷信號時,則可控硅自然關(guān)斷,即電流為零時關(guān)斷。從上面的分析可以看出,用于
低壓電容投切的固態(tài)繼電器在投入和切斷時的工作狀態(tài)非常理想,但他存在著一個致命的缺陷工作過程的發(fā)熱和諧波問題,這就限制了他在電容投切領(lǐng)域的進一步推廣。
2復(fù)合開關(guān)的工作原理
電容無功補償分為單相補償和三相補償,采用的開關(guān)相數(shù)也分為兩種。無論是單相投切開關(guān)還是三相開關(guān),機械式接觸器不可能較準(zhǔn)確地做到開關(guān)兩端電壓過零時閉合,在電流過零時切斷,而固態(tài)繼電器卻能做到這一點。相反,在開關(guān)閉合工作時,固態(tài)繼電器產(chǎn)生損耗和電壓電流諧波,而機械式接觸器卻能避免這些問題。因此,吸取固態(tài)繼電器和接觸器的優(yōu)點將是佳的選擇。也就是希望電容無功補償?shù)耐肚虚_關(guān)在投入和切斷瞬時利用(雙向)可控硅的特性,在平時閉合工作時利用機械觸點接觸電阻極小的特性,構(gòu)成了可控硅和繼電器(接觸器)并聯(lián)工作的開關(guān)即復(fù)合開關(guān)。
為了達到理想的工作狀況,可控硅和繼電器的開、斷有時序要求,假設(shè)復(fù)合開關(guān)的投入命令高電平為有效,則切斷命令為低電平有效;開關(guān)(可控硅、繼電器)閉合用高電平有效表示,則開關(guān)斷開用低電平有效表示,其各信號動作時序如圖1所示。
在圖1中T1為復(fù)合開關(guān)接收到投入命令后等待電壓過零所需的時間T2是繼電器延時閉合設(shè)定時間T0為繼電器閉合動作時間Tf為繼電器斷開動作時間T3是可控硅延時斷開設(shè)定時間T4可控硅自然關(guān)斷所需的時間。
在圖1中UKA,UKB,UKC,UKD,UKE,IKE分別表示投切信號、可控硅通斷、繼電器線圈通斷信號、繼電器通斷、電網(wǎng)電壓、電容(或觸點)電流。當(dāng)復(fù)合開關(guān)接收到投入命令時,可控硅的觸發(fā)信號準(zhǔn)備就緒,只要電壓過零就立刻觸發(fā)可控硅,而繼電器在接到投入命令后,要延時一段時間,此時間在設(shè)計時必須保證:只有當(dāng)可控硅導(dǎo)通后,才能閉合繼電器。當(dāng)復(fù)合開關(guān)接收到切斷命令后,繼電器立即斷開,經(jīng)過一段時間可控硅觸發(fā)信號消失,據(jù)可控硅關(guān)斷特性,只有當(dāng)通過可控硅陽極電流過零時,才能自然關(guān)斷。
3基于PIC16C61的復(fù)合開關(guān) 復(fù)合開關(guān)的工作原理完全可以用分立元件來實現(xiàn),其中的時序配合關(guān)系可以用電阻電容的 延時電路完成其功能。但是,由于分立元件的參數(shù)分散性以及可靠性差將會影響整個復(fù)合開關(guān)長期正常的工作,因此,通過方案比較,采用了PIC16C61單片機來實現(xiàn)復(fù)合開關(guān)的邏輯及控制時序。如圖2所示。
圖2中,合閘、分閘信號輸入到單片機的RB1,RB0接收過零信號,只有當(dāng)合閘指令有效時,在過零時刻,通過“過零處理”程序,RA1就輸出可控硅觸發(fā)信號,使可控硅導(dǎo)通。延時二個周期(40 ms)后,即通過“低高電平延時”程序處理,RA2輸出閉合信號有效,繼電器閉合導(dǎo)通,完成了復(fù)合開關(guān)一次合閘的動作;當(dāng)分閘信號有效時,單片機RA2輸出斷開信號使繼電器立刻分斷,同樣延時二個周期(40 ms)后,通過“高低電平延時”程序處理,RA1輸出低電平信號,使可控硅關(guān)斷,完成了一次分閘動作。
以上是單相復(fù)合開關(guān)的單片機實現(xiàn)情況。對于三相復(fù)合開關(guān):為了分析方便起見,假設(shè)開 關(guān)閉合的順序為A→B→C,如圖3所示。當(dāng)合閘指令有效時,由于此時B,C相的K2,K3斷開,A相可控硅可以立刻施以導(dǎo)通信號而不需要檢測電壓過零點,接著檢測B相的K2開關(guān)兩端的電壓過零點,在過零時刻,使B相的可控硅導(dǎo)通;然后檢測C相的K3開關(guān)兩端的過零點,在過零時刻,使C相的可控硅導(dǎo)通;后,延時二個周期(40 ms)后,即通過“低高電平延時”程序處理,輸出繼電器的閉合信號,繼電器閉合導(dǎo)通,完成了復(fù)合開關(guān)一次合閘的動作。三相復(fù)合開關(guān)的分閘過程與單相復(fù)合開關(guān)類似,當(dāng)所有的繼電器斷開并延時二個周期(40 ms)后,通過“高低電平延時”程序處理,使可控硅關(guān)斷,完成了一次分閘動作。
由上述可知:三相復(fù)合開關(guān)用PIC16C61實現(xiàn)時,增加一個過零輸入信號、2個可控硅控制信號和2個繼電器控制信號即可。整個動作過程由軟件實現(xiàn)。
某廠配電房低壓總電流為600 A,有功功率350 kW,電壓0.4 kV,要求功率因數(shù)提高到0.95~0.99,那么其
視在功率:
5實驗結(jié)果
(1)開通時間。
(2)關(guān)斷時間。
(3)控制電路功耗。
(4)開關(guān)接觸電阻≤0.02歐姆。
(5)開關(guān)在額定電流負載下溫升≤25℃。
(6)系統(tǒng)電壓處于額定電壓的±20%范圍內(nèi),開關(guān)能正常工作;若系統(tǒng)電壓超過額定電壓 的±20%時,開關(guān)強行跳閘。
(7)開關(guān)投入時涌流不大于2倍電容器額定電流。
(8)在電容器端子間的殘余電壓不大于額定電壓的100%時可再次電壓過零投入。
(9)以動態(tài)電壓過零方式投入。
(10)缺相時開關(guān)拒合閘。
(11)正常運行時,出現(xiàn)缺相自動跳閘,響應(yīng)時間≤0.2 s。
(12)系統(tǒng)停電時,開關(guān)自動跳閘響應(yīng)時間≤0.2 s。
(13)開關(guān)工作電源異常時,開關(guān)自動跳閘。
(14)采用LED指示,指示項目有:開關(guān)合閘位置指示;開關(guān)跳閘位置指示;缺相故障指示;系統(tǒng)電壓異常指示。
6結(jié)語
復(fù)合開關(guān)工作時損耗小,不增加電網(wǎng)諧波。并且使用復(fù)合開關(guān)可以增加投切電容器組數(shù),提高功率因數(shù)的步級精度,提高電網(wǎng)質(zhì)量。具有功能齊全,保護完備,不需外加電源,使用方便的特點。
由于采用了復(fù)合開關(guān),投切時的浪涌電流小,無觸點粘住之虞,可以較頻繁地投、切,因此,可以增加投切電容器的組數(shù)以提高補償精度。在實際應(yīng)用中用了12組15 kVA的
電容柜,通過控制器精確控制投切,可使功率因數(shù)保持在0.96~0.99之間。也就是說,使用復(fù)合開關(guān)不僅僅提高了可靠性,還提高了電能質(zhì)量。